Exercice 1 : (représentation graphique de fonctions et utilisation pratique)

On considère les fonctions $f, g: [0, +\infty[\to \mathbb{R} \text{ définie par } :$

$$f(x) = \exp(-x)$$
 , $g(x) = x$ pour tout $x \ge 0$.

- 1. Donner la représentation graphique des deux fonctions f et g sur l'intervalle [0, 10] sur le même graphique.
- 2. En déduire (graphiquement) que l'équation f(x) = g(x) a une unique solution \bar{x} .
- 3. En programmant des zooms sur le graphe des deux fonctions, donner \bar{x} à 10^{-3} près.

Exercice 2 : (suites récurrentes)

On considère la suite récurrente :

$$x_{n+1} = f(x_n) , x_0 > 0 ,$$

où f est la fonction de l'exercice 1.

- 1. Écrire une fonction de x_0 et de n qui donne la liste des n premiers termes de la suite.
- 2. Que pensez-vous du comportement de la suite pour $x_0 = 0.5$, $x_0 = 3$, $x_0 = 5$: a-t-on convergence et si oui quelle est la limite?
- 3. Mettre graphiquement en évidence la convergence ou la non-convergence de cette suite en construisant les segments liant les points (x_0, x_0) à (x_0, x_1) puis (x_0, x_1) à (x_1, x_1) puis (x_1, x_1) à (x_1, x_2) puis \cdots (x_n, x_n) à (x_n, x_{n+1}) puis (x_n, x_{n+1}) à (x_{n+1}, x_{n+1}) ...etc.

Exercice 3: (modélisation aléatoire)

On s'intéresse au jeu suivant : on effectue 100 lancers d'une pièce de monnaie. Si on obtient K fois "pile" consécutivement, on gagne 10 euros; sinon on perd 1 euro. On suppose que le tirage est sans biais donc que la probabilité de tomber sur "pile" est 0.5 et celle de tomber sur "face" est 0.5 également.

- 1. Simuler le jeu en écrivant une fonction qui effectue les 100 tirages aléatoires et qui renvoie le gain ou la perte à la fin du jeu (on pourra créer un compteur qui accumule le nombre de "pile" consécutifs obtenus).
- 2. Accepteriez-vous de jouer à ce jeu pour K = 6, 5, 4? (on pourra estimer la moyenne des gains qui est la limite, quand n tend vers l'infini, de $\frac{1}{n} \sum_{i=1}^{n} g_i$ où n est le nombre de fois où l'on joue et g_i est le gain ou la perte à la $i^{\text{ème}}$ partie.)

Exercice 4 : Manipulation de matrices

Ecrire une fonction dont l'argument est une matrice M, qui vérifie que M est carrée (sinon on renvoie 'erreur'), puis fait la somme des termes de la deuxième diagonale, i.e. si M est de taille $n \times n$

$$\sum_{i=1}^{n-1} M_{i,n-i+1} .$$