Université François Rabelais de Tours Département de Mathématiques

Contrôle continu terminal

Analyse Numérique et Optimisation

MA2.4, 2019

Exercice 1. On souhaite construire un aquarium parallélépipédique de volume V. Quelles doivent être les dimensions L, l, h (longueur, largeur et hauteur) de l'aquarium pour utiliser le moins de verre possible ? (Remarquer que l'aquarium est composé de 5 plaques de verre)

Exercice 2. On considère le problème : Trouver

$$\inf_{(x,y,z)\in C} (x+1)^2 + y^2 + (z-1)^2,$$

οù

$$C = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + 2z \le 4, x \ge 0, y \ge 1z \ge 1\}.$$

Montrer que la borne inférieure est atteinte en un point unique et trouver les coordonnées de ce point. On commencera par établir que C est un convexe fermé.

Exercice 3. Soit A une matrice symétrique définie positive.

- 1. Démontrer brièvement que le conditionnement de A pour la norme $\|.\|_2$, $K_2(A)$, vérifie $K_2(A) = \frac{\mu_n}{\mu_1}$ où $\mu_1(\mu_n)$ est la plus petite (resp. la plus grande) des valeurs propres de A.
- 2. On souhaite établir l'inégalité de Kantorovitch :

Pour tout
$$x \neq 0$$
 $1 \leq \frac{(Ax, x)(A^{-1}x, x)}{\|x\|^4} \leq \frac{(K_2(A) + 1)^2}{4K_2(A)}$,

(a) En utilisant une base orthonormée bien choisie pour rendre simple l'expression de (Ax, x) et de $(A^{-1}x, x)$ et l'inéqulité de Cauchy-Schwarz, démontrer que

$$||x||^4 \le (Ax, x)(A^{-1}x, x)$$

- (b) Démontrer que la fonction $f: x \to \frac{x}{\mu_1} + \frac{\mu_n}{x}$ est convexe et en déduire son maximum sur l'intervalle $[\mu_1, \mu_n]$.
- (c) En utilisant le fait que $\sqrt{ab} \le \frac{1}{2}(a+b)$, déduire l'inégalité : $\sqrt{(Ax,x)(A^{-1}x,x)} \le \frac{1}{2}(\sqrt{\frac{\mu_1}{\mu_n}} + \sqrt{\frac{\mu_n}{\mu_1}})||x||^2$ puis la deuxième partie de l'inégalité de Kantorovich
- 3. On désigne maintenant par \tilde{x} l'unique solution du problème de minimisation de $J(x) = \frac{1}{2}(Ax, x) (b, x)$ dans \mathbb{R}^n pour $b \in \mathbb{R}^n$.
 - (a) Soient x_0 et p deux vecteurs de \mathbb{R}^n . Montrer qu'il existe un unique réel λ que l'on calculera, tel que :

$$J(x_0 + \lambda p) = \min_{\mu \in \mathbb{R}} J(x_0 + \mu p).$$

(b) On définit une méthode pour résoudre trouver \tilde{x} par :

Initialisation x_0 donné, calculer $r_0 = Ax_0 - b$.

Algorithme Pour $k \ge 0$ tant que $r_k \ne 0$ faire

$$\bullet \ \lambda_k = -\frac{\|r_k\|^2}{(Ar_k, r_k)}$$

 $\bullet \ x_{k+1} = x_k + \lambda_k r_k$

$$\bullet \ r_{k+1} = Ax_{k+1} - b = r_k + \lambda_k A r_k$$

Comment se nomme cette méthode ?

On mesure l'erreur de convergence par $E(x_k) = (A(x_k - \tilde{x}), x_k - \tilde{x}).$

- (c) Etablir que $E(x_k) = (r_k, A^{-1}r_k)$.
- (d) Démontrer que $E(x_{k+1}) = E(x_k) \left(1 \frac{(r_k, r_k)^2}{(Ar_k, r_k)(A^{-1}r_k, r_k)} \right)$.
- (e) Démontrer, grâce à l'inégalité de Kantorovitch, que l'on a $E(x_{k+1}) \le E(x_k) \left(\frac{K_2(A) 1}{K_2(A) + 1}\right)^2$.
- (f) En déduire la convergence de la méthode. A quelle condition est-il plus intéressant de résoudre le système linéaire $M^{-1}Ax = M^{-1}b$ que le système Ax = b?

Exercice 4. Quelques propriétés des polynômes de Tchebychev

Rappel: on désigne par T_n le polynôme défini par la récurrence :

$$T_0(X) = 1, T_1(X) = X, \quad \forall n \ge 1, \quad T_{n+1}(X) = 2XT_n(X) - T_{n-1}(X).$$

On rappelle aussi que la fonction ch: $t \to \cosh(t) = \frac{1}{2}(e^t + e^{-t})$ et que sh $(t) = \frac{1}{2}(e^t - e^{-t})$.

- 1. (a) Etablir que si $\varepsilon = \pm 1$, $\operatorname{ch}(a + \varepsilon b) = \operatorname{ch}(a)\operatorname{ch}(b) + \varepsilon \operatorname{sh}(a)\operatorname{sh}(b)$.
 - (b) Démontrer que la fonction che st strictement convexe et qu'elle admet sur \mathbb{R}_+^* une bijection réciproque notée argch définie sur $[1, +\infty[$.
 - (c) Que pouvez vous dire de la convexité ou concavité de argch ?
 - (d) Etablir en posant $y = e^t$ que $\operatorname{argch}(x) = \ln(x + \sqrt{x^2 1})$
- 2. Etablir que

$$\forall x, |x| \le 1, \quad T_n(x) = \cos(n\arccos(x))$$

et que la famille des polynômes est une famille de polynômes orthogonaux pour dans $L^2(]-1,1[,\omega)$, où $\omega(x) = \frac{1}{\sqrt{1-x^2}}$ et le produit scalaire $(f,g)_{\omega} = \int_a^b f(t)g(t)\omega(t)dt$.

3. Démontrer que

$$\forall x \ge 1 \quad T_n(x) = \operatorname{ch}(n \operatorname{argch}(x)). \tag{1}$$

et en déduire que

$$\forall n \ge 0, \quad T_n(x) = \frac{1}{2} \left[\left(x + \sqrt{x^2 - 1} \right)^n + \left(x - \sqrt{x^2 - 1} \right)^n \right].$$
 (2)

4. Soit E_n l'ensemble des polynômes de degré n dont le coefficient en x^n est 1. Montrer, à l'aide du théorème des valeurs intermédiaires, que

$$\forall p \in E_n \quad \max_{-1 \le x \le 1} \frac{|T_n(x)|}{2^{n-1}} \le \max_{-1 \le x \le 1} |p(x)|.$$

On pourra raisonner par l'absurde et calculer la valeur des $T_n(x_k)$ où $x_k = \cos(k\pi/n)$.

- 5. On définit q_n par $\frac{1}{2^n}T_{n+1}(X) = X^{n+1} q_n(X)$. Etablir, en citant précisément le théorème utilisé, que q_n est le polynôme de meilleure approximation uniforme de X^{n+1} sur $\mathbb{R}_n[X]$, l'espace des polynômes de degré inférieur ou égal à n.
- 6. En déduire que le choix des zéros des polynômes de Tchebychev est le meilleur pour l'interpolation.

B) Approximation des fonctions Lipschitziennes

- 1. Démontrer que les racines du polynôme T_{n+1} sont les $x_{i,n} = \cos(\theta_{i,n}) = \cos(\frac{\pi}{2}(\frac{2i+1}{n+1}))$. On appelle les $x_{i,n}$ Points de Tchebychev de "rang" n pour l'intervalle [-1,1].
- 2. Etablir que les polynômes $(L_{i,n})_{1 \leq i \leq n}$ d'interpolation de Lagrange aux points $x_{i,n}$ ont pour expression

$$L_{i,n}(X) = \frac{\prod_{j=0}^{n} (X - x_j)}{(X - x_i) \prod_{i \neq j} (x_i - x_j)}.$$

puis que

$$L_{i,n}(X) = \frac{T_{n+1}(X)}{(X - x_i)T'_{n+1}(x_i)}.$$

3. En déduire que

$$L_{i,n}(X) = (-1)^i \frac{T_{n+1}(X)}{(X - x_i)} \frac{\sqrt{1 - x_{i,n}^2}}{n}.$$

4. En déduire que

$$|L_{i,n}(\cos \theta)| \le \frac{|\sin \theta_i \cos(n+1)\theta|}{(n+1)|\cos(\theta) - \cos(\theta_i)|}$$

puis que

$$|L_{i,n}(\cos\theta)| \le \pi \frac{|\cos(n+1)\theta|}{(n+1)|\theta-\theta_i|}$$

5. En utilisant le théorème des accroissements finis, et en posant $h = \frac{\pi}{n+1}$ démontrer que

$$\sum_{i=1}^{n} |L_{i,n}(\cos \theta)| \le \frac{\pi}{(n+1)h} \sum_{j \notin \{i,i-1,i+1\}} \frac{1}{|i-j|-1} + 3\pi.$$

et en déduire qu'il existe C > 0 telle que

$$\Lambda_n = |L_{i,n}(\cos \theta)| \le C \ln(n).$$

6. Redémontrer que, pour tout $f : [a,b] \to \mathbb{R}$, et si $P_n(f)$ désigne le polynôme d'interpolation de f en les points de Tchebychev de "rang" n, on a:

$$||f - P_n(f)||_{\infty} \leq (1 + \Lambda_n)d(f, \mathbb{R}_n[X]),$$

$$où d(f, \mathbb{R}_n[X]) = \inf_{q \in \mathbb{R}_n[X]} \|f - q\|_{\infty}.$$

- 7. Supposons f Lipschitzienne. En admettant le théorème de Jackson qui assure que $d(f, \mathbb{R}_n[X]) \leq K \frac{1}{n+1}$, établir que la suite des polynômes d'interpolation aux points de Tchebychev au rang n converge uniformément vers f.
- 8. Si on pose $E_n(x) = f(x) P_n(f)(x)$, établir que si f est $C^{n+1}([-1,1])$, on a

$$||E_n||_{\infty} \le \frac{1}{2^n} \frac{1}{(n+1)!} ||f^{(n+1)}||_{\infty}.$$

C) Intégration numérique

On se fixe un entier k et on souhaite approcher, pour des fonctions continues sur [-1,1] l'intégrale $\int_{-1}^{1} f(t)dt$ par $\int_{-1}^{1} P_f(t)dt$ où P_f désigne le polynôme d'interpolation de Lagrange aux points $x_{i,k} = \cos \theta_{i,k}$ racines du polynôme T_{k+1} . On pose $a_n(x) = \int_{-1}^{1} \frac{T_n(x) - T_n(y)}{x - y} dy$

- 1. Etablir qu'il existe des réels $\omega_{i,k}$ tels que $\int_{-1}^{1} P_f(t) dt = \sum_{i=0}^{k} \omega_{i,k} f(x_{i,k})$. Que valent les $\omega_{i,k}$ en fonction des $L_{i,k}$?
- 2. Etablir que

$$\omega_{i,k} = (-1)^i \sin(\theta_{i,k}) \frac{a_{k+1}(x_{i,k})}{(k+1)}$$

3. Démontrer que $a_{n+1}(x) - 2xa_n(x) + a_{n-1}(x) = \frac{2}{1-n^2}(1+(-1)^n)$ et que

$$a_k(\cos(\theta)) = \left(2\sin(k\theta) - \sum_{1 \le n \le k/2} \frac{4}{4n^2 - 1}\sin(k - 2n\theta)\right) / \sin(\theta).$$

- 4. Démontrer que $\omega_{i,k} = \left(2 \sum_{1 \le n \le k/2} \frac{4}{4n^2 1} \cos(2n\theta_{i,k})\right) / (k+1)$ et que les $\omega_{i,k}$ sont tous strictement positifs.
- 5. Donner une expression de l'erreur commise pour une fonction $f \in C^{k+1}([-1,1])$.

6. Montrer que la méthode est convergente quand k tend vers $+\infty$ si f est Lipschitzienne.

Exercice 5. On se donne un intervalle I = [a, b] fermé borné de \mathbb{R} et $x_0, \dots, x_n, n+1$ éléments distincts de I.

- 1. Montrer que, pour tout polynôme P de degré n, il existe un unique (n+1)-uplet de réels (a_0, \ldots, a_n) tel que $P(x) = a_0 + a_1(x x_0) + \cdots + a_{n-1}(x x_0) \cdots (x x_{n-1}).$
- 2. Soit f une fonction de classe C^{n+1} sur [a,b]. Montrer que le polynôme interpolateur de Lagrange de f aux points x_0, \ldots, x_n peut s'écrire

$$P_n(x) = \sum_{i=0}^n f[x_0, \dots, x_i] \prod_{k=0}^{i-1} (x - x_k).$$

où les $f[x_0, \ldots, x_i]$ sont les différences divisées de f définies par

$$\begin{cases} f[x_i] = f(x_i) \\ f[x_i, \dots, x_j] = \frac{f[x_{i+1}, \dots, x_j] - f[x_i, \dots, x_{j+1}]}{x_j - x_i} \end{cases}$$

- 3. Déduire des questions précédentes que $f[x_0, \ldots, x_n]$ est invariant par permutations.
- 4. Montrer en utilisant la fonction $f(x) P_n(x)$ qu'il existe $\xi \in]a,b[$ tel que $f[x_0,\ldots,x_n] = \frac{f^{(n)}(\xi)}{n!}$.
- 5. Montrer que $|P_n(x) f(x)| \le \frac{M_{n+1}}{(n+1)!} |\pi_n(x)|$ pour tout $x \in [a,b]$ avec $M_{n+1} = \max_{x \in [a,b]} |f^{(n+1)}(x)|$ et $\pi_n(x) = \prod_{i=1}^n (x-x_i)$. On distinguera les cas $x \in \{x_0, \dots, x_n\}$ et $x \notin \{x_0, \dots, x_n\}$. Dans le second cas, on appliquera les résultats précédents au polynôme interpolateur de Lagrange aux points x_0, \dots, x_n, x .

Exercice 6. Soit E un espace vectoriel de dimension finie. L'objectif de cet exercice est de montrer que si f et h sont deux fonctions de E dans \mathbb{R} avec f convexe et h concave telles que $h(x) \leq f(x)$ pour tout $x \in \mathbb{R}^n$, il existe une fonction affine g telle que $h(x) \leq g(x) \leq f(x)$ pour tout $x \in \mathbb{R}^n$.

Pour démontrer ce résultat, nous aurons besoin de la définition suivante : Soit $p: E \to \mathbb{R}_+ \cup \{\infty\}$ une fonction. On dit que p est sous-additive si p satisfait :

- $p(\lambda x) = \lambda p(x)$ pour tout $x \in E$ et tout $\lambda \ge 0$,
- $p(x + y) \le p(x) + p(y)$ pour tous $x, y \in E$.

On admettra le résultat suivant (théorème de Hahn-Banach) : Soient p une fonction sous-additive, F un sousespace vectoriel de E et ϕ une forme linéaire sur F telle que $\forall x \in F, \phi(x) \leq p(x)$, alors il existe une extension $\tilde{\phi}$ de ϕ à E tout entier tel que $\forall x \in E, \tilde{\phi}(x) \leq p(x)$.

- 1. Soit p une fonction sous-additive sur E. Montrer que l'ensemble $\{x \in E, p(x) < 1\}$ est une partie convexe de E.
- 2. Inversément, si C est un ouvert convexe non vide de E contenant l'origine, on appelle jauge de C la fonction p_C définie par

$$p_C(x) = \inf\{\alpha \ge 0, x \in \alpha C\},\$$

avec αC l'image par l'homothétie de centre 0 et de rapport α de C.

- (a) Vérifier que αC est convexe et que $\{\alpha \geq 0, x \in \alpha C\}$ est un intervalle de \mathbb{R}^+ . [On pourra montrer que si $\alpha < \beta, \alpha C \subset \beta C$.]
- (b) Déterminer ce que vaut $p_B(x)$ si B désigne la boule unité ouverte. On pourra s'appuyer sur une figure.
- (c) Montrer que p_C est sous-linéaire et que $C = \{x \in E, p(x) < 1\}$. Ind : pour $\varepsilon > 0$, introduire $\lambda = p(x) + \varepsilon$ et $\mu = p(y) + \varepsilon$.)
- 3. Sous les hypothèses de la question précédente, soit $y \notin C$. Montrer qu'il existe une forme linéaire ψ sur E telle que $\psi(y) = 1$ et $\psi(x) < 1$ pour tout $x \in C$.
- 4. En déduire que si C est un convexe ouvert et $0 \notin C$, il existe une forme linéaire k telle que k(x) > 0 pour tout $x \in C$.
- 5. Soient C_1 et C_2 deux parties convexes avec C_1 ouvert telles que $C_1 \cap C_2 = \emptyset$. Montrer que l'ensemble $C_1 C_2 = \{x y, x \in C_1, y \in C_2\}$ est un convexe ouvert et que $0 \notin C_1 C_2$.
- 6. Montrer qu'il existe une forme linéaire h et un réel a tels que $C_1 \subset h^{-1}(]-\infty, a[)$ et $C_2 \subset h^{-1}(]a, \infty[)$.
- 7. Si f est convexe, montrer que l'intérieur de l'épigraphe de f, $epi(f) = \{(x,y) \in \mathbb{R}^n \times \mathbb{R}, y > f(x)\}$.
- 8. Conclure.