Examen de session 2 Durée de l'épreuve : 3 heures

Les exercices sont indépendants. Vous pouvez admettre une question et traiter les suivantes. Les réponses devront être étayées par des arguments construits. Bon travail!

On munit \mathbb{R} de la tribu borélienne et de la mesure de Lebesgue.

Exercice 1 Pour chacune des fonctions suivantes, déterminer à quels espaces \mathcal{L}^p , avec $p \in [1, +\infty[$, elles appartiennent :

$$f: x \mapsto \frac{\sin(x)}{\sqrt{x}} e^{-x} 1_{]0,+\infty[}(x) \text{ et } g: x \mapsto \frac{x}{1+|x|^{5/3}}.$$

Exercice 2 Pour tout $n \in \mathbb{N}^*$, on définit la fonction f_n de la façon suivante :

$$f_n(x) = \begin{cases} n^2(x - n + 1/n) & \text{si } x \in [n - 1/n, n[, \\ -n^2(x - n - 1/n) & \text{si } x \in [n, n + 1/n[, \\ 0 & \text{sinon.} \end{cases}$$

- 1) Tracer l'allure du graphe de f_n et déterminer l'intégrale de f_n sur \mathbb{R} .
- 2) Démontrer que la suite de fonctions $(f_n)_n$ converge simplement vers une fonction que l'on déterminera et dont on calculera l'intégrale.
- 3) Comment expliquer l'apparente contradiction entre les deux premières questions?

Exercice 3 Pour tout $n \in \mathbb{N}$, on définit la fonction f_n sur \mathbb{R}_+ en posant

$$f_n(x) = \frac{x^n}{1 + x^{n+2}}.$$

- 1) Démontrer que pour tout $n \in \mathbb{N}$ la fonction f_n est intégrable sur \mathbb{R}_+ .
- 2) On note u_n l'intégrale de f_n sur \mathbb{R}_+ . Déterminer la limite de la suite de $(u_n)_n$.

Exercice 4 Pour tout $x \in \mathbb{R}$, on pose

$$F(x) = \int_{\mathbb{R}} \cos(tx)e^{-t^2/2} \frac{dt}{\sqrt{2\pi}}.$$

- 1) Démontrer que F est de classe \mathcal{C}^1 sur \mathbb{R} et exprimer F' comme une intégrale à paramètre.
- 2) À l'aide d'une intégration par parties, démontrer que F est solution de l'équation différentielle F'(x) = -xF(x).
- 3) En admettant que F(0) = 1 déterminer la valeur de F(x) pour tout $x \in \mathbb{R}$.

Exercice 5 On définit la fonction L de \mathbb{R} dans $\overline{\mathbb{R}}_+$ en posant, pour $x \in \mathbb{R}$,

$$L(x) = \int_{\mathbb{R}} \frac{e^{xt}}{e^t + e^{-t}} dt.$$

- 1) On pose J =]-1,1[. Démontrer que L est finie sur J. Que dire de L(x) si $x \notin J$?
- 2) Démontrer que la fonction L est de classe C^2 sur J et exprimer ses deux premières dérivées sous forme intégrale. En déduire que L est convexe sur J.
- 3) Soit $(x_n)_n$ une suite croissante d'éléments de J qui converge vers 1. Quelle est la limite de la suite $(L(x_n))_n$? En déduire $\lim_{x\to 1^-} L(x)$.
- 4) Soit $x \in]0,1[$ fixé. Démontrer, en posant t = v/(1-x), que

$$L(x) = \frac{1}{1-x} \int_{\mathbb{R}} \frac{e^{-v}}{1 + e^{-2v/(1-x)}} dv.$$

5) En déduire la limite de (1-x)L(x) lorsque x tend vers 1 par valeurs inférieures.

Exercice 6 On pose, pour x > 0,

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

- 1) Démontrer que $\Gamma(x)$ est un réel strictement positif.
- 2) Démontrer que pour tout réel x > 1, $\Gamma(x) = (x-1)\Gamma(x-1)$.
- 3) Calculer $\Gamma(1)$. En déduire $\Gamma(n)$ pour $n \in \mathbb{N}^*$.
- 4) Démontrer que la fonction Γ est continue sur \mathbb{R}_+^* . On pourra tout d'abord montrer le résultat sur un intervalle de la forme ε , $+\infty$ pour $\varepsilon > 0$.
- 5) Démontrer de même que Γ est de classe \mathcal{C}^1 sur $\mathbb{R}_+^*.$