Université de Tours Master de Mathématiques

Examen, session de Juin 2019

Algèbre approfondie Semestre 2

L'épreuve dure 3h. Les exercices sont indépendants. La notation tiendra compte de la clarté de la rédaction. Toute affirmation doit être justifiée.

Questions de Cours/Td

- 1) Déterminer le corps de décomposition E de $P = X^4 1 \in \mathbb{Q}[X]$ et calculer $[\mathbb{E} : \mathbb{Q}]$.
- 2) Soit $\mathbb F$ un corps et soit $P\in\mathbb F[X]$ un polynôme de degré 2 ou 3.
 - (a) Montrer que P est irréductible si et seulement si P n'admet pas de racine.
 - (b) Le critère ci-dessus reste-t-il vrai pour un polynôme de degré 4?
 - (c) Déterminer tous les polynômes irréductibles de degré inférieur ou égal à 4 dans $\mathbb{F}_2[X]$.
- 3) Soit p un nombre premier et $\xi_p = e^{\frac{2i\pi}{p}}$. Montrer que $\mathsf{Gal}(\mathbb{Q}(\xi_p):\mathbb{Q})$ est isomorphe à \mathbb{F}_p^{\times} .

Exercice 1. Soit \mathbb{E} le corps de décomposition du polynôme $P = X^4 - X^3 - 5X + 5 \in \mathbb{Q}[X]$.

- 1) Déterminer \mathbb{E} et calculer le degré $[\mathbb{E} : \mathbb{Q}]$.
- 2) Déterminer l'ordre et la structure de $G = \mathsf{Gal}(\mathbb{E} : \mathbb{Q})$.
- 3) Écrire la correspondance de Galois pour $\mathbb{E} : \mathbb{Q}$.

Exercice 2.

- 1) Montrer que le polynôme $X^2 + 1$ est irréductible sur $\mathbb{Z}/7\mathbb{Z}$.
- 2) Soit L le corps de rupture de X^2+1 sur $\mathbb{Z}/7\mathbb{Z}$ et i une racine de X^2+1 dans L. Quel est le cardinal de L? Donner une base de L sur $\mathbb{Z}/7\mathbb{Z}$.
- 3) Calculer dans $L: (2+3i) \times (4+5i), (3+2i)^{-1}$.
- 4) Vérifier que 3+i est un générateur du groupe multiplicatif (L^*, \times) . Quel est le nombre de générateurs de ce groupe? Les exprimer en fonction de 3+i.
- 5) Montrer que tout élément de $\mathbb{Z}/7\mathbb{Z}$ admet une racine carrée dans L. (On ne demande pas de calculer ces racines carrées.)
- 6) Soit $x \in \mathbb{Z}/7\mathbb{Z}$. Montrer que si x admet une racine cubique dans L, alors en fait x admet une racine cubique dans $\mathbb{Z}/7\mathbb{Z}$. Déterminer explicitement les $x \in \mathbb{Z}/7\mathbb{Z}$ qui vérifient cette propriété.

Exercice 3. Soit $\mathbb{K} = \mathbb{Q}(\sqrt[3]{2}, j)$ où $j = e^{\frac{2i\pi}{3}}$ une extension de \mathbb{Q} incluse dans \mathbb{C} .

- 1) Déterminer $[\mathbb{Q}(j):\mathbb{Q}]$ et $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]$.
- 2) Déterminer $[\mathbb{K}:\mathbb{Q}]$ puis une base de \mathbb{K} sur \mathbb{Q} à l'aide du théorème de la base télescopique.
- 3) Déterminer l'ensemble des éléments de \mathbb{K} vérifiant $x^2 \in \mathbb{Q}$.
- 4) Montrer que $\mathbb{Q}(\sqrt[3]{2})$, $\mathbb{Q}(j\sqrt[3]{2})$ et $\mathbb{Q}(j^2\sqrt[3]{2})$ sont 3 extensions de \mathbb{Q} de degré 3.
- 5) Soit \mathbb{L} une extension de \mathbb{Q} inclue dans \mathbb{K} de degré 3. Dans cette question on souhaite montrer que \mathbb{L} est égale à une des 3 extensions de la question précédente. On raisonne par l'absurde et on suppose que ce n'est pas le cas.
 - (a) Montrer que \mathbb{L} ne contient aucune des racines complexes de $X^3 2$.
 - (b) En déduire que $[\mathbb{K} : \mathbb{Q}] \geq 9$ et conclure.